On the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry

نویسندگان

  • J. M. Landsberg
  • Mateusz Michalek
چکیده

We establish basic information about border rank algorithms for the matrix multiplication tensor and other tensors with symmetry. We prove that border rank algorithms for tensors with symmetry (such as matrix multiplication and the determinant polynomial) come in families that include representatives with normal forms. These normal forms will be useful both to develop new efficient algorithms and to prove lower complexity bounds. We derive a border rank version of the substitution method used in proving lower bounds for tensor rank. We use this border-substitution method and a normal form to improve the lower bound on the border rank of matrix multiplication by one, to 2n − n + 1. We also point out difficulties that will be formidable obstacles to future progress on lower complexity bounds for tensors because of the “wild” structure of the Hilbert scheme of points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Degeneration of Tensors and Algebras

An important building block in all current asymptotically fast algorithms for matrix multiplication are tensors with low border rank, that is, tensors whose border rank is equal or very close to their size. To find new asymptotically fast algorithms for matrix multiplication, it seems to be important to understand those tensors whose border rank is as small as possible, so called tensors of min...

متن کامل

Explicit tensors of border rank at least 2n-1

For odd m, I write down tensors in C m ⊗C m ⊗C m of border rank at least 2m − 1, showing the non-triviality of the Young-flattening equations of [6] that vanish on the matrix multiplication tensor. I also study the border rank of the tensors of [1] and [3]. I show the tensors T 2 k ∈ C k ⊗C 2 k ⊗C 2 k , of [1], despite having rank equal to 2 k+1 − 1, have border rank equal to 2 k. I show the eq...

متن کامل

The border support rank of two-by-two matrix multiplication is seven

We show that the border support rank of the tensor corresponding to two-by-two matrix multiplication is seven over the complex numbers. We do this by constructing two polynomials that vanish on all complex tensors with format four-by-four-by-four and border rank at most six, but that do not vanish simultaneously on any tensor with the same support as the two-by-two matrix multiplication tensor....

متن کامل

The geometry of rank decompositions of matrix multiplication I: 2x2 matrices

This is the first in a series of papers on rank decompositions of the matrix multiplication tensor. In this paper we: establish general facts about rank decompositions of tensors, describe potential ways to search for new matrix multiplication decompositions, give a geometric proof of the theorem of [3] establishing the symmetry group of Strassen’s algorithm, and present two particularly nice s...

متن کامل

A New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure

The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1601.08229  شماره 

صفحات  -

تاریخ انتشار 2016